Zweryfikowane. Rozwinięcie dziesiętne to sposób przedstawiania liczb rzeczywistych w postaci ułamka dziesiętnego lub ułamka dziesiętnego nieskończonego. Przypomnijmy jaką postać ma ułamek dziesiętny. Jest to liczba "z przecinkiem". Przykłady ułamków dziesiętnych. 0,75. 1,25. -3,8. 9,007.
grupaJ str.2/2 6. Oblicz sposobem pisemnym: a) 525,6+39,75 b) 300,5−56,8 7. Oblicz: Title: Untitled Created Date: 3/22/2020 1:40:36 PM
Uzupełnij zaokrąglenia liczb do podanego rzędu oraz wpisz w odpowiednie miejsce słowo 'nadmiarem', jeśli przybliżenie jest z nadmiarem lub 'niedomiarem', jeśli przybliżenie jest z niedomiarem. przybliżenie do jedności 128, 604 ≈ Tu uzupełnij, przybliżenie z Tu uzupełnij 23, 874 ≈ Tu uzupełnij, przybliżenie z Tu uzupełnij 0
Ułamki okresowe. Zamienia ułamki zwykłe na ułamki dziesiętne Przybliżenia dziesiętne. Rozwinięcia dziesiętne. Wykonuje dodawanie, odejmowanie, mnożenie i dzielenie liczb wymiernych w postaci rozwinięć skończonych. Stosuje kolejność działań. I I skończone i okresowe. Rozpoznaje rozwinięcia dziesiętne nieskończone. I
Niezależnie od tego, czy jest to kalkulator ułamkowy, standardowy kalkulator kieszonkowy, czy nasze dedykowane narzędzie — przelicznik ułamków na ułamki dziesiętne 🇺🇸. Czasami ułamek jest stosunkowo łatwy do zamiany na ułamek dziesiętny bez żadnych narzędzi — jak w przypadku 1/2, 3/4 (lub nawet 1/8).
Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. Rozwinięcie dziesiętne ułamka Warg: Jaka cyfra stoi na 74 miejscu po przecinku w rozwinięciu dziesiętnym ułamka okresowego 3,(7315)? Jaki jest schemat rozwiązywania tego typu zadań? 2 kwi 12:27 Jerzy: = 3,731573157315...... = 3, 7315 7315 7315 74 = 18*4 + 2 ( będzie to druga liczba ciągu 7315 , czyli 3 ) 2 kwi 12:30 Powracający: wedlug mnie tak na 1 miejscu 7 na 2 m 3 na 3 m 1 na 4 m 5 74:4= 18+2 czyli bedzie takich pelnych 18 cykli +2 a na drugim niejsci stoi 3 wiec cyfra 3 stoi na 74 miejscu 2 kwi 12:32 Warg: Dziękuję, rzeczywiście nie takie trudne zadanie 2 kwi 12:34
bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Przedstaw liczbę \(\displaystyle{ 0,2(6)}\) w postaci ułamka zwykłego. Problem stwarza mi cyfra \(\displaystyle{ 2}\) przed tą \(\displaystyle{ 6}\) w okresie. Jak powinienem postępować, aby otrzymać wynik? Próbowałem póki co zapisać w postaci \(\displaystyle{ 0,2666... = x}\) i teraz zaczyna się kłopot, gdyż gdyby nie było tej \(\displaystyle{ 2}\), to bym wymnożył obustronnie przez \(\displaystyle{ 10}\) i bym otrzymał prawidłowy wynik, a tak jak mówiłem mam problem z tą \(\displaystyle{ 2}\). Lbubsazob Użytkownik Posty: 4672 Rejestracja: 17 maja 2009, o 13:40 Płeć: Kobieta Lokalizacja: Gdańsk Podziękował: 124 razy Pomógł: 978 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: Lbubsazob » 3 paź 2011, o 17:57 Tu masz podobny przykład, tylko że liczba \(\displaystyle{ 2,3(4)}\): mat_61 Użytkownik Posty: 4615 Rejestracja: 8 lis 2009, o 10:22 Płeć: Mężczyzna Lokalizacja: Racibórz Pomógł: 866 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: mat_61 » 3 paź 2011, o 17:59 Wskazówka: pomnóż przez 10 oraz 100: \(\displaystyle{ \begin{cases} 2,(6)=10x \\ 26,(6)=100x \end{cases}}\) ares41 Użytkownik Posty: 6499 Rejestracja: 19 sie 2010, o 08:07 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 142 razy Pomógł: 922 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: ares41 » 3 paź 2011, o 18:01 A nie prościej po prostu: bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 18:08 Lbubsazob pisze:Tu masz podobny przykład, tylko że liczba \(\displaystyle{ 2,3(4)}\): Dziękuję, wyszło. Tylko mam jeszcze jedno pytanie, możesz wytłumaczyć tą linijkę? \(\displaystyle{ \frac{31}{9}=10x \\ x= \frac{31}{90}}\) Co się tu stało, że jedynie mianownik się wymnożył? anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 18:10 Podzielono obie strony przez \(\displaystyle{ 10}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 20:38 Żeby nie zaczynać nowego tematu: przy kolejnym zadaniu mam problem. Zatem, muszę wyznaczyć wszystkie pary liczb całkowitych \(\displaystyle{ x}\) i \(\displaystyle{ y}\), spełniających równanie: \(\displaystyle{ xy - y + x + 1 = 0}\) Dotychczas moje zapiski wyglądają następująco: \(\displaystyle{ x(y+1)(y-1)=0\\(y+1)(x-1)=0}\) lecz jest to błędne, gdyż równania \(\displaystyle{ (y+1)}\) i \(\displaystyle{ (x-1)}\) po podstawieniu niewiadomych nie dają takich wyników jak w odpowiedzi do zadania. Proszę o wskazanie i wytłumaczenie mi błędu. anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 20:59 Nie powinno być czasem: \(\displaystyle{ xy - y + x - 1 = 0}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:01 Nie, dokładnie taki przykład jak podałem mam podane w zbiorze zadań. bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:09 \(\displaystyle{ \begin{cases} x=2\\y=-3\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=0\\y=1\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=3\\y=-2\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=-1\\y=0\end{cases}}\) Wskazówka: Odejmij od obu stron równania \(\displaystyle{ 2}\) i rozłóż lewą stronę na czynniki. anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 21:13 \(\displaystyle{ xy - y + x + 1 = 0}\) \(\displaystyle{ xy - y + x + 1 -2= -2}\) \(\displaystyle{ xy - y + x -1= -2}\) \(\displaystyle{ (x - 1)(y + 1)=-2}\) Mogą zajść przypadki \(\displaystyle{ \begin{cases} x - 1=-1 \\ y + 1=2 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=1 \\ y + 1=-2 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=-2 \\ y + 1=1 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=2 \\ y + 1=-1 \end{cases}}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:14 A co z wynikami podanymi w odpowiedzi? anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 21:15 Rozwiąż te układy, które podałam i będzie to co w odpowiedzi. \(\displaystyle{ -2=-1 \cdot 2}\) \(\displaystyle{ -2= 1\cdot (-2)}\) \(\displaystyle{ -2= -2\cdot 1}\) \(\displaystyle{ -2= 2\cdot (-1)}\) stąd tamte układy
Temat lekcji: Ułamki zwykłe, ułamki dziesiętne, ułamki okresowe. Cele lekcji: -sposoby skracania ułamków, zastosowanie nwd, -zamiana ułamka zwykłego na dziesiętny, -sposoby wydzielania okresów, -wyznaczanie ilości cyfr między przecinkiem a okresem, -wyznaczanie długości okresu. Przebieg lekcji: Omówienie sposobów wyznaczania największego wspólnego dzielnika (największy wspólny dzielnik będzie potrzebny w pkt. d do skracania ułamków): a) Sposób wyznaczania najwiekszego wspólnego dzielnika z wykorzystaniem standardowej procedury gcd kalkulatora TI 92, np. wpisujemy w linii edycyjnej wyrażenie gcd(1995,1957) i po naciśnięciu ENTER otrzymujemy wynik Sposób wyznaczania najwiekszego wspólnego dzielnika przy pomocy algorytmu Euklidesa zapisanego jako program na kalkulator TI 92. Pisanie programu rozpoczynamy klawiszami APPS - 7:Program Editor -Enter - 3:New - Enter i w okienku Variable wpisujemy nazwę programu, np. algorytm i naciskamy dwa razy ENTER. :algorytm(a,b) :Prgm :ClrIO :1->r :While r>0 : mod(a,b)->r : Disp string(a)&"="&string(intDiv(a,b))&"*"&string(b)&"+"&string(r) : b->a : r->b :EndWhile :Disp "NWD="&string(a) :EndPrgm Po napisaniu programu należy przejść klawiszami APPS i 1:Home do głównego okna kalkulatora i w linii edycyjnej wpisać zlecenie: algorytm(1995,1957). Po naciśnięciu ENTER otrzymujemy wynik: 1995=1*1957+38 1957=51*38+19 38=2*19+0 NWD=19 c) Ćwiczenia w wyznaczaniu najwiekszego wspólnego dzielnika różnych par liczb, d) Ułożenie programu na skracanie ułamków z wykorzystaniem najwiekszego wspólnego dzielnika: :skroc(l,m) :Prgm :ClrIO :string(l)&"/"&string(m)&"="->s :gcd(l,m)->n :l/n->l :m/n->m :Disp s&string(l)&"/"&string(m) :EndPrgm Przykładowy wynik działania programu - w linii edycyjnej należy wpisać zlecenie skroc(1995,1957) 1995/1957=105/103 e) Ćwiczenia w skracaniu ułamków. Sposoby zamiany ułamka zwykłego na ułamek dziesiętny: a) Sposób poprzez zwykłe pisemne dzielenie: 133 : 74 = 1,7972972972972972972... 74 590 518 720 666 540 518 220 148 720 ... Wniosek: Jeśli w trakcie dzielenia powtórzy się któraś reszta to dzielenie można przerwać ponieważ dalsze cyfry rozwinięcia dziesiętnego również będą się powtarzać. b) Sposób zamiany ułamka zwykłego na dziesiętny do 12 cyfr znaczących - wykorzystanie opcji APPROXIMATE i Display Digits-FLOAT 12 kalkulatora TI 92: 133/74 Należy zwrócić uwagę, że ostatnia cyfra tego rozwinięcia jest zaokrąglana. c) Sposób zamiany ułamka zwykłego na dziesiętny do 175 miejsc po przecinku przy pomocy poniższego programu: :dziel(licz,mian) :Prgm :ClrIO :string(licz)&"/"&string(mian)&"="&string(intDiv(licz,mian))&"." ->s :For n,1,175,1 : mod(licz,mian)*10->licz : s&string(intDiv(licz,mian)) ->s : If mod(n,25)=0 Then : Disp s : " "->s : EndIf :EndFor :Disp s :EndPrgm Przykładowy wynik działania programu - w linii edycyjnej należy wpisać zlecenie: dziel(133,74) 133/74= 9729729729729729729729729 7297297297297297297297297 2972972972972972972972972 9729729729729729729729729 7297297297297297297297297 2972972972972972972972972 Własności ułamków okresowych. Ćwiczenia w zamianie ułamków zwykłych na dziesiętne przy pomocy programu dziel(a,b) i wyznaczanie ich okresów: 2 / 3 = - okresem jest cyfra 6 3 / 4 = - okresem jest cyfra 0 3 / 5 = - okresem jest cyfra 0 5 / 6 = - okresem jest cyfra 3 6 / 7 = - okresem jest grupa cyfr 857142 9 / 11 = - okresem jest grupa cyfr 81 11 / 15 = - okresem jest cyfra 3 19 / 60 = - okresem jest cyfra 6 133 / 74 = - okresem jest grupa cyfr 972, Należy zwrócić uwagę, że dla wiekszych liczb wyznaczanie okresów jest dość kłopotliwe i dlatego należy poszerzyć program dziel(a,b) o procedurę ich automatycznego wyznaczania. Poniższy program na zamianę ułamków zwykłych na okresowe zawiera taką procedurę. :zuzno(licz,mian) :Prgm :ClrIO :string(licz)&"/"&string(mian)&"="->s :Disp s :gcd(licz,mian)->nwd1 :licz/nwd1->licz :mian/nwd1->mian :"="&string(licz)&"/"&string(mian)&"="->s :s&string(factor(licz))&"/("&string(factor(mian))&")="->s :Disp s :"="&string(intDiv(licz,mian))&"."->s :mian->mian1 :0->i2 :While mod(mian1,2)=0 : i2+1->i2 : mian1/2->mian1 :EndWhile :0->i5 :While mod(mian1,5)=0 : i5+1->i5 : mian1/5->mian1 :EndWhile :max(i2,i5)->immpao :If immpao=0 : s&"9"->s :1->dlok :9->licz1 :While mod(licz1,mian1)>0 : dlok+1->dlok : mod(licz1,mian1)*10+9->licz1 :EndWhile :For n,1,150,1 : mod(licz,mian)*10->licz : s&string(intDiv(licz,mian))->s : If immpao=n : s&"("->s : If immpao+dlok=n : s&")"->s : If mod(n,25)=0 Then : Disp s : " "->s : EndIf :EndFor :Disp s :EndPrgm Po uruchomieniu tego programu zleceniem zuzno(1995,1957) otrzymujemy: 1995/1957=105/103=3*7*5/103= =1.(0194174757281553398058252 427184466)0194174757281553 3980582524271844660194174 7572815533980582524271844 6601941747572815533980582 52019417475728155339805825 Program skraca ułamek, rozkłada licznik i mianownik na czynniki pierwsze i oznakowuje nawiasami ( ) okres. c) Postawienie uczniom do rozwiązania problemu 1. Problem 1. Czy każdy ułamek ma rozwinięcie okresowe? Odpowiedź: Każdy ułamek zwykły ma rozwinięcie okresowe. Uzasadnienie: W trakcie każdego dzielenia pisemnego któraś reszta musi się powtórzyć i dalsze cyfry rozwinięcia również będą się powtarzać. (Ilość różnych reszt ułamka nieskracalnego p/q, wynosi co najwyżej q-1.) d) Sformułowanie i rozwiązanie problemu 2. Problem 2. Czy zawsze okres rozpoczyna się tuż po przecinku? Jeśli nie, to jak określić ilość cyfr, rozwinięcia dziesiętnego ułamka, między przecinkiem a pierwszą cyfrą okresu? W czasie rozwiązywania problemu uczniowie powinni wykonać wiele przykładów na zamianę ułamków zwykłych na okresowe i szczegółowo przeanalizować te przykłady w których okres nie rozpoczyna się tuż po przecinku. Program zuzno(a,b) podaje, oprócz rozwinięcia dziesiętnego i okresu, również rozkład licznika i mianownika na czynniki pierwsze, co powinno pomóc w rozwiązaniu problemu. Odpowiedź: Ilość cyfr między przecinkiem a okresem równa jest większej z ilości dwójek lub piątek w rozkładzie mianownika na czynniki pierwsze. Uzasadnienie: Każde dzielenie przez 2 lub przez 5 lub przez 2*5, czyli przez 10, daje jedną cyfrę rozwinięcia dziesiętnego. Cyfra ta nie powtarza się ponieważ takie dzielenie jest skończone i daje reszte zero. Jeśli w mianowniku są jeszcze inne czynniki różne od 2 i od 5 to dzielenie jest nieskończone i one decydują o okresie. Patrz przykłady 5/6, 11/15, 23/60, 133/74. e) Sformułowanie i rozwiązanie problemu 3. Problem 3. Jaka jest własność ułamków o mianownikach 9, 99, 999, ... ? Uczniowie powinni wykonywać przykłady na zamianę ułamków o mianownikach 9, 99, 999, ... na ułamki okresowe i obserwować wyniki. Odpowiedź: Ułamki o mianowniku 9, 99, 999, ... mają okresy złożone z tylu cyfr ile jest dziewiątek w mianowniku. Jednocześnie licznik takiego ułamka jest jego okresem (z ewentualnymi zerami na początku, jeśli ilość cyfr licznika jest mniejsza od ilości cyfr mianownika). Np. 1/9 = 0.(1)11111111111111111111111111111... 5/9 = 0.(5)55555555555555555555555555555... 7/99 = 0.(07)0707070707070707070707070707... 12/99 = 0.(12)1212121212121212121212121212... Odpowiedź jest prawidłowa nawet wtedy, gdy ułamek o mianowniku 9, 99, 999, ... skróci się, np. 6/9 = 2/3 = 0,(6)666666666666666666666666 592/999 = 16/27 = 0.(592)592592592592592592 f) Sformułowanie i rozwiązanie problemu 4. Problem 4. Jak określić długość okresu ułamka p/q bez wykonywania dzielenia liczb p i q? Pomysł rozwiązania tego problemu powinna nasunąć odpowiedź do poprzedniego problemu. Odpowiedź: Dla ułamków o mianownikach 9, 99, 999,... długość okresu jest równa ilości dziewiątek w tych mianownikach. Zatem dla innych ułamków należy rozszerzyć je do mianownika 9 lub 99 lub 999 lub ... - ilość otrzymanych dziewiatek jest długością okresu. Przykłady: a) ułamek o mianowniku 11 ma okres złożony z dwóch cyfr ponieważ można go rozszerzyć do ułamka o mianowniku 99. b) ułamek o mianowniku 37 ma okres długości 3 ponieważ można go rozszerzyć do ułamka o mianowniku złożonym z 3 dziewiątek. Sposób ten jest zastosowany w programie zuzno(a,b) do wyznaczania okresu. g) Ćwiczenia w wyznaczaniu długości okresów ułamków. (przed rozszerzaniem ułamków dobrze jest rozłożyć na czynniki liczby 9, 99, 999, .... Wykorzystać do tego celu zlecenie factor(a), np. factor(999) 37*33.) 4. Zadanie domowe. Znaleźć taką liczbę pierwszą q, aby ułamek 1999/q zapisany w postaci dziesiętnej miał w okresie: a) 5 cyfr b) 10 cyfr c) 17 cyfr.
Liczba wymierna jest to liczba, którą można wyrazić w postaci a/b, gdzie a jest liczbą całkowitą i b jest liczbą całkowitą różną od zera. Zbiór liczb wymiernych oznaczamy literą W. Przykłady liczb wymiernych Przykład Liczbami wymiernymi są na przykład: 1/2, 6/3 (czyli 2), 0/7 (czyli 0), -5/10 (czyli -1/2), (czyli 1/100), 3/2 (czyli 1 i 1/2). Przykład Mimo, że liczby 5 i nie są wyrażone w postaci ułamka a/b, to są liczbami wymiernymi, ponieważ można je wyrazić w takiej postaci: 5 = 5/ = 1/3-2 = -4/2 Własności zbioru liczb wymiernych Zbiór liczb wymiernych jest zbiorem nieskończonym, ponadto nie ma w nim liczby najmniejszej, ani największej. Podzbiorem zbioru liczb wymiernych jest zbiór liczb całkowitych (). Ułamki zwykłe Definicja Iloraz a/b nazywamy ułamkiem zwykłym: właściwym, jeżeli a < b ,niewłaściwym, jeżeli a ≥ b. Przykład 1/2, 5/8, 100/101 to ułamki zwykłe właściwe, 2/1, 8/5, 101/100, 0/3 to ułamki zwykłe niewłaściwe. Ponadto liczbę a nazywamy licznikiem, a liczbę b - mianownikiem ułamka. Skracanie ułamków zwykłych W tym miejscu możesz zobaczyć w jaki sposób skracamy ułamki zwykłe. Nasz robot rozwiązuje dowolne zadanie z tego zakresu. Wpisz dane: Licznik: Mianownik: Objaśnienia: Jeżeli wynik wskaże wartość "infinity" to oznacza, że jest poza zakresem dostępnym dla niniejszego kalkulatora. Zapis wyniku oznacza liczbę pomnożoną przez 1012. Gdy jedna z liczb będąca wynikiem działań jest wieksza od jej reprezentacji 64-bitowej, kalkulator stosuje przybliżenia podasz liczbę rzeczywistą, do obliczeń zostanie wzięta jedynie jej część całkowita. Ułamki dziesiętne Ułamki o mianownikach 10, 100, 1000, 10000 itd. możemy zapisać w dziesiątkowym systemie pozycyjnym, oddzielając przecinkiem (lub kropką) część całkowitą i 10-te, 100-tne, 1000-czne itd. części tej liczby. Przykład 2/10 = 14/100 = = = Aby zamienić ułamek zwykły na ułamek dziesiętny należy wykonać dzielenie pisemne licznika przez mianownik. W wyniku dzielenia możemy uzyskać ułamek dziesiętny skończony lub ułamek dziesiętny nieskończony okresowy. Każda liczba wymierna ma dokładnie jedno rozwinięcie dziesiętne: okresowe lub skończone. Przykład 5/4 = - jest to przykład ułamka dziesiętnego skończonego. 1/3 = = 0.(3) - jest to przykład ułamka dziesiętnego nieskończonego okresowego. Ponieważ po kropce liczba "3" powtarza się nieskończenie wiele razy używamy zapisu polegającego na ujęciu okresu w nawiasach okrągłych. Gdy zechcemy zamienić ułamek zwykły na dziesiętny, to jest to proste, jeżeli mamy do czynienia z ułamkiem dziesiętnym skończonym (np. = 11/100), natomiast w przypadku ułamka okresowego trzeba stosować metody, które zostaną omówione w dalszej części kursu. Ciekawostki Która z liczb: 1 czy jest większa? Aby to sprawdzić zamieńmy ułamek okresowy 0.(9) na ułamek x = strony tego równania mnożymy przez 10x = Mamy zatem prosty układ równań:10x = i x = odejmiemy od pierwszego równania drugie, otrzymamy: 9x = czyli 9x = obie strony równania przez 9 otrzymujemy wynik: x = 1. Ale przecież na początku zapisaliśmy, że x = !Wnioskujemy więc że liczby te są ... równe! 1 = Oczywiście nie mamy tutaj do czynienia z żadnym przybliżeniem. Każdy ułamek dziesiętny, mający okres 9 można zastąpić ułamkiem dziesiętnym skończonym. A więc dla przykładu: = = = 1 i to po prostu różny sposób zapisu tej samej liczby. Pytania Jak sprawdzić, czy liczba jest wymierna? Liczba jest wymierna, jeżeli jest: liczbą całkowitą, ułamkiem zwykłym, liczbą mieszaną, ułamkiem dziesiętnym o skończonej liczbie cyfr, ułamkiem dziesiętnym o rozwinięciu nieskończonym ale okresowym, począwszy od określonej pozycji cyfry. Jeżeli liczba jest zapisana w inny sposób, to należy stosować różne metody. Nie ma jednego algorytmu na sprawdzenie, czy dana liczba jest wymierna czy niewymierna. Najczęściej stosuje się dowód nie wprost, czyli założenie, że dana liczba jest wymierna, czyli że da się wyrazić w postaci ilorazu dwóch liczb całkowitych p/q, przy czym q jest różne od zera i poprzez dochodzenie do sprzeczności można wykazać, że dana liczba nie jest pierwiastków można zastosować następującą metodę: jeżeli chcemy wykazać, że dla liczby naturalnej n liczba √n jest wymierna, wystarczy znaleźć taką liczbę pierwszą p, że n jest podzielne przez p i nie jest podzielna przez p2. W ten sposób można na przykład stwierdzić, że liczba √18 nie jest wymierna, bo 18 jest podzielne przez 2, ale nie jest podzielna przez interakcyjne pomogą przygotować się na sprawdzian, test, egzamin, a ponadto usystematyzują wiedzę z danej dziedziny. To także świetny trening do matury. Wiele ćwiczeń to dobre zadania z rozwiązaniamiZadania związane z tematem:Liczby wymierne Zadanie - czy dana liczba jest wymiernaSprawdzić, czy liczba 5,35(43) jest wymierna czy rozwiązanie zadaniaInne zagadnienia z tej lekcjiLiczby naturalneLiczba naturalna jest to liczba ze zbioru N={0,1,2,3,4,...}Liczby całkowiteLiczba całkowita jest to liczba ze zbioru C={0,1,-1,2,-2,3,-3,4,-4,...}Liczby niewymierneCo to są liczby niewymierne?Liczby rzeczywisteCo to są liczby rzeczywiste? Zbiór R jest to suma zbioru liczb wymiernych i zbioru liczb górny i kres dolny zbioruCo to jest kres górny i kres dolny, zbiór ograniczony z góry i z dołu?Przedziały liczboweCo to są przedziały liczbowe? Działania na przedziałach wiedzySprawdź swoje umiejętności z materiału zawartego w tej quizyDodawanie ułamków dziesiętnychSzkoła podstawowaKlasa 5Liczba pytań: 12Odejmowanie ułamków dziesiętnychSzkoła podstawowaKlasa 5Liczba pytań: 12Porównywanie ułamków dziesiętnychSzkoła podstawowaKlasa 5Liczba pytań: 15Zamiana na ułamki dziesiętneSzkoła podstawowaKlasa 5Liczba pytań: 15Ułamek liczbySzkoła podstawowaKlasa 6Liczba pytań: 20Ułamki dziesiętne podstawowaKlasa 5Dodawanie ułamków podstawowaKlasa 5Odejmowanie ułamków podstawowaKlasa 5© 2008-10-17, ART-86 Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
Liczby całkowite to jeszcze nie wszystko. Pierwsze spotkanie z ułamkami następuje najczęściej w czasie urodzin, kiedy okazuje się, że trzeba się podzielić tortem. Wtedy to całość należy podzielić na pewne części. Jeśli części przy podziale są jednakowe, to możemy przedstawić je w postaci ułamka. Liczby, które można zapisać w postaci pewnego ułamka nazywamy liczbami wymiernymi. Liczbę $x$ nazywamy liczbą wymierną, gdy $x = \frac{p}{q}$ dla pewnych liczb całkowitych $p$ i $q$, gdzie $q \neq 0$. $$Q = \{x: x = \frac{p}{q}, p, q \in Z, q \neq 0\}$$ Zbiór liczb wymiernych często oznacza się literą $Q$. Każda liczba całkowita i każda liczba naturalna jest liczbą wymierną. Liczbami wymiernymi są ułamki zwykłe oraz ułamki dziesiętne, które mają skończone lub nieskończone okresowe rozwinięcie dziesiętne. W odróżnieniu od liczb całkowitych, liczby wymierne nie są w zasadzie wielokrotnościami jednostek. Wraz z liczbami wymiernymi pojęcie liczebności ulega zmianie, przechodzimy od wyliczania do wymiaru.
rozwinięcia dziesiętne liczb wymiernych ułamki okresowe